BayesMendel: an R environment for Mendelian risk prediction.
نویسندگان
چکیده
Several important syndromes are caused by deleterious germline mutations of individual genes. In both clinical and research applications it is useful to evaluate the probability that an individual carries an inherited genetic variant of these genes, and to predict the risk of disease for that individual, using information on his/her family history. Mendelian risk prediction models accomplish these goals by integrating Mendelian principles and state-of-the-art statistical models to describe phenotype/genotype relationships. Here we introduce an R library called BayesMendel that allows implementation of Mendelian models in research and counseling settings. BayesMendel is implemented in an object-oriented structure in the language R and distributed freely as an open source library. In its first release, it includes two major cancer syndromes: the breast-ovarian cancer syndrome and the hereditary non-polyposis colorectal cancer syndrome, along with up-to-date estimates of penetrance and prevalence for the corresponding genes. Input genetic parameters can be easily modified by users. BayesMendel can also serve as a generic tool for genetic epidemiologists to flexibly implement their own Mendelian models for novel syndromes and local subpopulations, without reprogramming complex statistical analyses and prediction tools.
منابع مشابه
Recent Enhancements to the Genetic Risk Prediction Model BRCAPRO
BRCAPRO is a widely used model for genetic risk prediction of breast cancer. It is a function within the R package BayesMendel and is used to calculate the probabilities of being a carrier of a deleterious mutation in one or both of the BRCA genes, as well as the probability of being affected with breast and ovarian cancer within a defined time window. Both predictions are based on information ...
متن کاملPrediction of Freshness Quality and Phosphate Residue of White Shrimp Products Using Near-Infrared Spectroscopy
Background: The manufacturing of frozen shrimp is an important industry for the economy of Thailand. The objective of this study was to use Near-Infrared (NIR) spectroscopy to determine the freshness quality, including Total Volatile Basic Nitrogen (TVB-N) and Water Holding Capacity (WHC) of white shrimp (whole and chopped shrimp) and phosphate residues of shrimp. Methods: Sixty white shrimp ...
متن کاملRisk prediction based on a time series case study: Tazareh coal mine
In this work, the time series modeling was used to predict the Tazareh coal mine risks. For this purpose, initially, a monthly analysis of the risk constituents including frequency index and incidence severity index was performed. Next, a monthly time series diagram related to each one of these indices was for a nine year period of time from 2005 to 2013. After extrusion of the trend, seasonali...
متن کاملShort Communication Recent BRCAPRO Upgrades Significantly Improve Calibration
The recent release of version 2.0-8 of the BayesMendel package contains an updated BRCAPRO risk predictionmodel,which includes revisedmodelingof contralateral breast cancer (CBC)penetrance, provisions for pedigrees of mixed ethnicity and an adjustment for mastectomies among family members. We estimated penetrance functions for CBC by a combination of parametric survival modeling of literature d...
متن کاملCurrent Applications of Genetic Risk Scores to Cardiovascular Outcomes and Subclinical Phenotypes
Genetic risk scores are a useful tool for examining the cumulative predictive ability of genetic variation on cardiovascular disease. Important considerations for creating genetic risk scores include the choice of genetic variants, weighting, and comparability across ethnicities. Genetic risk scores that use information from genome-wide meta-analyses can successfully predict cardiovascular outc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistical applications in genetics and molecular biology
دوره 3 شماره
صفحات -
تاریخ انتشار 2004